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Integrating single-cell RNA sequencing and
bulk RNA sequencing data to predict acute
respiratory distress syndrome in
sepsis patients
Sepsis affects approximately 20%e30% of patients admitted
to the intensive care unit.1 Acute respiratory distress syn-
drome (ARDS) is recognized as one of the earliest and most
common complications of sepsis, occurring when sepsis
triggers a systemic infection and provokes an uncontrolled
inflammatory response that can lead to severe lung dam-
age.2 Studies have demonstrated that patients with sepsis-
induced ARDS face not only a mortality risk ranging from 30%
to 40%3 but also long-term outcomes such as cognitive
impairment and memory loss.4 Moreover, patients with
sepsis-associated ARDS have a higher mortality rate
compared with those with ARDS caused by other factors and
tend to have suboptimal treatment outcomes once ARDS
develops.5 Therefore, early identification and treatment
initiation are crucial to prevent ARDS in sepsis, reduce
mortality, and minimize healthcare costs. In this study, we
aimed to develop a predictive model for assessing the like-
lihood of ARDS development in sepsis patients by integrating
bulk RNA sequencing and single-cell RNA sequencing data
(materials & methods can be found in supplementary data).

After quality control of single-cell RNA sequencing data of
seven peripheral blood mononuclear cells, we employed the
“SingleR” package to identify marker genes for clustering
annotation. This analysis revealed the presence of seven
distinct cell clusters, namely T_cells, Monocytes, B_cells,
NK_cells, Platelets, GMP, and Pre-B_cells_CD34- (Fig. 1A).
Subsequently, we calculated the proportions of various cell
subpopulations in sepsis and sepsis-induced ARDS and found
that the proportions of Tcells (sepsis vs. sepsis-induced ARDS:
0.37 vs. 0.38) and B cells (sepsis vs. sepsis-induced ARDS: 0.07
vs. 0.11) were moderately elevated in the sepsis-induced
ARDS group, whereas the proportions of natural killer (NK)
cells (sepsis vs. sepsis-induced ARDS: 0.11 vs. 0.08) and
monocytes (sepsis vs. sepsis-induced ARDS: 0.43 vs. 0.41)
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were lower (Fig. 1B, C). To gain more granularity, further
clustering and downscaling analyses of NK cells, monocytes,
andTcellswereconducted.The results revealed thatpatients
with sepsis-induced ARDS had a significant increase in Cluster
1 NK cells (sepsis vs. sepsis-induced ARDS: 0.35 vs. 0.61) and
Cluster 0 Tcells (sepsis vs. sepsis-induced ARDS: 0.45 vs. 0.52)
(Fig. 1DeF).Moreover, therewas a significantalteration in the
CD14þ monocyte phenotype (Cluster 0, 1, 3, and 4) and an
increase in the number of CD16þ monocytes (Cluster 2, sepsis
vs. sepsis-induced ARDS: 0.08 vs. 0.09) compared with the
sepsis group. To characterize the cell subsets, 282 geneswere
obtained using the FindAllMarkers method.

The occurrence of sepsis-induced ARDS was investigated
usingweighted gene co-expression network analysis (WGCNA)
frombulkRNAsequencingdata.During theanalysis, four (dark
green, royal blue, dark turquoise, and red) contained 1923
genes and exhibited the highest correlation with sepsis-
inducedARDS scores (Fig. 1G). Therewere 66 candidate genes
for subsequent model construction by overlapping single-cell
RNA and WGCNA (Fig. 1H). Subsequently, we employed two
machine learning methods, namely random forest graph
analysis and support vector machine recursive feature elimi-
nation (SVM-RFE), to screen the 66 candidate genes for
feature genes to be used in model construction. The random
forest plot was utilized to analyze the relative importance of
the 66 genes, and the top 10 genes in terms of relative
importance were selected for subsequent analysis (Fig. 1I).
Furthermore, the SVM-RFE algorithm identified 26 genes out
of the 66 genes (Fig. 1J). Ultimately, six genes were found to
overlap between the two algorithms: ARPC1B, B2M, HBG2,
HIST1H3H,OAZ1,andSNCA (Fig. 1K). Theareaunder the curve
was found to be 0.838, indicating that the model’s prediction
outperformed that of the six signature genes alone (Fig. 1L).

We also performed functional enrichment analysis of 66
candidate genes and six sepsis-induced ARDS signature genes
in single-cell RNA seq data. Thefindings showed higher sepsis-
behalf of KeAi Communications Co., Ltd. This is an open access
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Figure 1 Construction of predictive model for sepsis-induced acute respiratory distress syndrome (ARDS). (A) Seven cell pop-
ulations were annotated by singleR as T_cells (n Z 9153), Monocytes (n Z 10398), B_cells (n Z 2050), NK_cells (n Z 2388),
Platelets (nZ 396), GMP (nZ 58), and Pre-B_cells_CD34- (nZ 31). (B, C) Percentage of different cells in sepsis and sepsis-induced
ARDS: T_cells (0.37 vs. 0.38), Monocytes (0.43 vs. 0.31), B_cells (0.07 vs. 0.11), NK_cells (0.11 vs. 0.08), Platelets (0.02 vs. 0.01),
GMP (0.002 vs. 0.003), and Pre-B_cells_CD34- (0.0008 vs. 0.03). (D) Sepsis-induced ARDS had a significant increase in Cluster 1 NK
cells (sepsis vs. sepsis-induced ARDS: 0.35 vs. 0.61). (E) There was a significant alteration in the CD14þ monocyte phenotype
(Cluster 0, 1, 3, and 4) and an increase in the number of CD16þ monocytes (Cluster 2, sepsis vs. sepsis-induced ARDS: 0.08 vs. 0.09)
compared with the sepsis group. (F) Sepsis-induced ARDS had a significant increase in Cluster 0 T cells (sepsis vs. sepsis-induced
ARDS: 0.45 vs. 0.52). (G) Correlating the modules with sepsis-induced ARDS. (H) The intersection of single-cell RNA marker genes
and genes with modular genes obtained from weighted gene co-expression network analysis is shown by Venn diagrams. (I) A
random forest plot was utilized to analyze the relative importance of the 66 genes. (J) Support vector machine recursive feature
elimination (SVM-RFE) algorithm identified 26 genes out of the 66 genes. (K) The intersection of random forest plot and SVM-RFE
algorithm. (L) The predicted model area under the curve (AUC) was 0.838.
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induced ARDS scores compared with sepsis, particularly in
monocytes and NK cells (Figs. S1AeC). These findings suggest
a closeassociation between candidate genes and the function
of monocytes and NK cells, highlighting the importance of
these cell populations in candidate gene analysis. Addition-
ally, we assessed the expression of six sepsis-induced ARDS
signature genes across different cell clusters. The findings
indicated widespread expression of SNCA, B2M, OAZ1, and
ARPC1B in peripheral blood mononuclear cells, with B2M
showing significantly higher expression in monocytes and NK
cells, particularly in the sepsis-induced ARDS group (Figs.
S1DeF). Furthermore, compared with T cells, the expression
of B2M inmonocytes and NK cells was significantly higher (Fig.
S1E, F). Subsequently, we delved into exploring the specific
functions and related mechanisms of B2M in NK cells.

Based on the mean B2M expression, the NK cells were
divided into two groups. Figure S2A illustrates that the pro-
portion of NK cells with high B2M expression significantly
increased in the sepsis-induced ARDS group compared with
the sepsis group. This observation suggests that NK cells
exhibiting high B2M expression play a crucial role in the pro-
gression of sepsis-induced ARDS. Using FindAllMarkers and
Wilcoxon tests, we identified 628 significantly differentially
expressed genes between B2M high- and low-expressing NK
cells. Notably, IL32, TRAC, CD53, ACTB, and S100A11 were
significantly up-regulated in B2M high-expressing NK cells,
whereas CD69, NFKBIA, JUN, DUSP1, and DUSP3 were signifi-
cantly down-regulated (Fig. S2B). Functional analyses,
including GO and KEGG, revealed significant enrichment of
these differentially expressed genes in various pathways,
such as ribosome structure, oxidoreduction-driven active
transmembrane transporter activity, electron transfer ac-
tivity, NADH dehydrogenase activity, and several disease-
related pathways (Fig. S2C). Additionally, irGSEA analysis
demonstrated that TGF-beta-signaling and TNFA-signaling-
via-NFKB signaling were inhibited in B2M high-expressing NK
cells, while reactive-oxygen-species-pathway, protein-
secretion, PI3K-AKT-mTOR-signaling, and other pathways
were significantly activated (Fig. S2D). Pseudo-time trajec-
tory analysis indicated that B2Mhigh-expressingNKcellswere
in a more advanced stage of differentiation (Fig. S2E, F). To
further investigate the gene expression profile and potential
cellular functions of NK subpopulations in pseudo time, we
employed a branch expression analysis model followed by
hierarchical clustering analysis. This approach allowed us to
identify four distinct geneexpressionmodules,with “cell fate
1” branch cells exhibiting high expression of IL32 and S100A11
(Fig. S2G). These genes were primarily associated with cyto-
kine signaling in the immune system, regulation of leukocyte
activation, and respiratory burst functions.

Together, we integrated single-cell RNA sequencing and
bulk RNA sequencing data and applied machine learning to
identify six signature genes and create a robust prediction
model for sepsis-induced ARDS. Future multi-center experi-
ments with large samples are needed to validate the predic-
tiveefficacy of these signature genes for sepsis-inducedARDS.
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